Augmentation and implant treatment
Two-stage surgery in the severely resorbed edentulous mandible

By Dr Marko Nikolic, Croatia

Introduction
An adequate bone volume at the future implant site is a prerequisite for ideal implant placement and implant success. A residual bone with a vertical dimension less than 5.0 mm indicates a cut-off point and implies the need of additional augmentation procedures in connection with implant insertion, whereas higher values of the alveolar crest ≥ 5.0 mm are considered to be sufficient for treatment with standard-diameter implants without the urgent need of any horizontal bone augmentation.

Distant donor sites like the anterior and posterior iliac crest and intraoral areas like the retromandibular and the interforaminal region of the chin are common sources for harvesting autogenous bone grafts. Depending from the donor site, patient and surgeon should be aware of the possible confrontations with various advantages but also disadvantages when harvesting the bone. Harvesting bone from the iliac crest requires patient hospitalisation, and surgery under general anaesthesia, whereas intraoral bone harvesting can be performed ambulatory and under local anaesthesia.

The main problem with autogenous bone grafting is represented by the high risk of patient morbidity, causing pain, swelling, and healing problems at the donor site. The aim of this case presentation is to demonstrate a predictable, two-stage operating protocol for the horizontal augmentation of the severely resorbed, edentulous anterior mandible with an autogenous bone graft, harvested from the crestal alveolar ridge at implant site, in order to create a sufficient bone volume for the later implant therapy, without doing morbidity for the patient.

Patient data
The 47-year-old male patient visited our dental office in order to renew his old and poor fitting prostheses and to create an implant-supported prosthesis. He was suffering from severe periodontal disease, on which the reason for the vertical decreases of the alveolar crest is a reduced interforaminal vertical bone height and a horizontal bony thickness of less than 3.0 mm. According to the clinical measurements and the values of the 3D CBCT scan, the interforaminal vertical bone height was between 2.0-2.5 mm. The horizontal bone volume amounted to 1.5-2.0 mm in the implantation zone. The CBCT-Scan revealed a horizontal crestal bone thickness of 2.1 mm in region 32 and 1.9 mm in region 44.

Diagnostic procedures
In cases of long-term edentulism, the dental surgeon is almost always confronted with a reduced bone volume, representing both a major challenge and a significant demand for the use of diagnostic imaging methods prior to augmentation and implant treatment. Conventional X-ray images contain only a two-dimensional information concerning the vertical height of the alveolar bone. Therefore, they represent an insufficient method for the appreciation of the horizontal bony dimensions. In comparison, three-dimensional (3-D) diagnostic tools like cone beam computed tomography (CBCT) offer the advantage of the visualisation of the so-called ‘z-axis’, representing the bone volume in the horizontal, i.e. bucco-lingual dimension of the alveolar crest respectively. A proper treatment planning and the use of 3-D diagnosis are therefore crucial parameters for a predictable and sustainable final treatment outcome in implant therapy, especially in patients cases with severe resorption of the jawbone, like in our presented patient case.

The oral examination and the CBCT-Scan (SCANORA, Soredex, Schutterwald, Germany) revealed a distinct bone resorption in the lower jaw, showing a more pronounced horizontal atrophy in the anterior part of the mandible (Figs. 2 & 3). According to the clinical measurements and the values of the 3-D CBCT scan, the interforaminal vertical bone height was between 2.0-2.5 mm. The horizontal bone volume amounted to 1.5-2.0 mm in the implantation zone. The CBCT-Scan revealed a horizontal crestal bone thickness of 2.1 mm in region 32 and 1.9 mm in region 44.

Treatment planning and augmentation procedure
After patient-consultation, we opted for a twostage surgery with an intracranially harvested autogenous bone-graft and a delayed implant treatment after a healing period of at least four months. As the vertical dimension of the implant region appeared to be sufficient enough for placement of implants with a standard length, we decided to cut off 5.0 mm of the thin and sharp-edged alveolar ridge by osteotomy, in order to create an autogenous lateral onlay bone-graft for horizontal augmentation in the anterior alveolar ridge. This protocol comprised in our view the advantage of the avoidance of donor morbidity, because the donor site was the receptor site as well. After creation and mobilisation of the mucoperiosteal flap, the very thin and sharp edge of the atrophied alveolar crest became visible (Fig. 4). The osteotomy of the bone was performed with a saw (Bone splitting system, Helmut Zepf Medizintechnik GmbH, Seetingen-Oberflacht, Germany). Fig. 5. Subsequently, the flap was detached from the anterior man-
ble with chisel (bone splitting system, Helmut Zepf, Medizintechnik GmbH, Settlingen-Oberlacht, Ger-
man), Fig. 6) and a contour-cancelling
ous bone block was obtained (Fig. 7). The bone graft was fixed at the buccal side of the anterior mandible (region 34–44) with four 8.0 mm long titanium-miniscrews (Storns am
Mark GmbH, Emmingen-Lippingen, Ger-
man). A combination of autogenous bone chips and particu-
lated xenograft (BEGO Osteo, BEGO
Implant Systems, Bremen, Ger-
man) was placed in the small bone out-
space between the bone block and the alveolar processus, as well as around and on the bone graft. The augmented site was covered with a plantar rich in growth factors (PRGF) membrane (STI Biotechnology Insti-
tute, Blue Bell, USA) and additionally with a barrier membrane for guided bone regeneration (GIR, Bio-Gide, Ge-"chütz Biomaterials Vertrebsge-
ellschaft mbH, Baden-Baden, Ger-
man; Fig. 9). The healing of the graft was uneventful and without any complications, like membrane ex-
pulsion, being classified as a frequent post-operative complication. The patient was provided with a remov-
able provisional prosthesis.

Re-entry and implant surgery

The re-entry for the delayed implant placement protocol was planned af-
er a healing period of four months. With regard to the soft aspect of the augmented area of the anterior mandible, the dimensions of the alveolar ridge appeared sufficient enough for implant placement (Fig. 10). The CBCT data confirmed the assumption, demonstrating a sig-
nificant gain of bone volume in the interforaminal region of the mandible after augmentation. The horizon-
tal thickness of the crestal alveolar bone was 5.53 mm in region 44 and 4.43 in region 32. The augmentation procedure resulted in a horizontal bone gain of about 3.9 mm in region 44 and 3.5 mm in region 32 respec-
tively, representing a mean bone gain of 3.6 mm (Fig. 11). Prior to implant placement, the fixation screws were removed. The four implants with a diameter of 3.75 mm and a length of 11.5 mm (BEGO Serado® RXS, BEGO Implant Sys-
tems) were inserted epicerically in regions 31, 32, 41 and 43 using the bot-
finder method without a surgical guide (Fig. 12). The insertion torque of the implants was 35 Ncm with good primary stability.

Pre-prosthetic surgery and prosthetic rehabilitation

After three months of uneventful submerged healing, the panoramic X-ray showed a successful implant osseointegration without any signs of bone resorption (Fig. 13). Due to a lack of keratinised gingiva, we de-
cided for an enlargement of the ratio between attached and free gingiva by performing mucogingival sur-
gery with the Edlan-Mejchar method (Figs. 15, 16 & 17). After an additional healing period of one month, the fi-
nal bar retained, a removable acrylic overdenture was incorporated. The bar was constructed with bar abut-
ments (PS TIBA, BEGO Implant Systems) and a non-precious alloy (Winmed®), BEGO Dental, Bremen) and was screw-retained on the four implants (Figs. 18, 19 & 20).

Discussion

In our case presentation, the patient suffered from an extremely hori-
zontal bone resorption, resulting in a 1.0–3.0 mm thin, and knife-edged alveolar crest. Since standard diam-
eter dental implants need a certain bone volume for an adequate stabilization and a good predict-
able osseointegration, augmentation pro-
cedures had to be performed prior to implant treatment.

A recently published meta analysis showed that dental implant survival has probably to be seen indepen-
dently of the biomaterial used in augmentation procedures. Since this evidence is limited by the fact, that defect size, augmented volume, and regenerative capacity are scare-
ely well characterized in literature, autog-
ogenous bone is still recommended as the ‘gold standard’ for augmentation in the deficient alveolar crest. Simul-
taneous grafting and augmentation is the standard procedure in ridge augmentation, resulting in an ex-
tended operating time.

Fortunately, as the vertical dimen-
sion of the anterior mandible was high enough in our clinical case, we were able to harvest an adequate au-
togenous bone block from the thin alveolar crest, in order to use it as an onlay graft for the horizontal aug-
mentation of the anterior mandible. This procedure avoided donor site morbidity, and resulted in less oper-
ative time and a reduced patient dis-
comfort. The dimensions of the grafts were ideal for lateral augmentation, so that there was no need for any ad-
ditional carving of the bone block. As mean bone gain after healing of the autogenous graft was 3.6 mm in our patient, it was slightly smaller com-
pared to the average bone gain of 4.3 mm, as reported in a systematic review by Jensen and Terheyden in 2009, but was comparable to the findings of a recent review by Sanz-
Sánchez et al., showing a mean bone gain in horizontal defects of 3.9 mm in a staged approach. Nonetheless, we gained enough bone volume for insertion of four standard di-
ameter implants. Considering the fact that the fixation screws had to be removed, and with regard to a number of benefits of a delayed im-
plant placement in augmented de-
ficient alveolar ridges, we opted for a two-stage protocol. Even though delayed implant placement with flap elevation required a second sur-
gical intervention and therefore an additional burden for the patient, it comprised the additional advantage of a visual and tactile assessment with respect to the osseointegration of the autograft in our patient case.

Another crucial advantage of the staged approach comprised inter alia the possibility for an implant placement in an ideal position for the later prosthetic restoration un-
der visual control. Another reason for open access for implant place-
ment was the use of non-resorbable microscrews for the stabilisation of the bone graft. The decision to utilize...
As the combination of autogenous grafts with guided bone regeneration (GBR) is apparently associated with superior outcomes, we decided to use a barrier membrane. With the additional application of a PRF membrane, we aimed to utilise the beneficial effects of platelet-derived rich plasma for an advanced wound therapy, and the reduced risk of post-operative infection. The vestibuloplasty with the Edlan-Mej above was performed for two purposes. Firstly, it was done in order to create a sufficient amount of keratinised mucosa. According to findings of a systematic review, published by Lin et al., a lack of keratinised mucosa around implants fosters plaque accumulation, inflammation, and soft-tissue recession. Secondly we aimed to create enough space for the final overdenture.

Conclusion

The staged approach with the use of an autogenous bone graft, harvested from the surgical site in the anterior mandible, resulted in a significant horizontal bone gain, and took to a good osseointegration of both, au-
tograft and implants. Obviously, the described grafting procedure has not been previously reported in literature. Despite the lack of any experi-
ence reports, our method revealed nonetheless a successful rehabilita-
tion with an implant-supported, screw-retained prosthetic rehabilita-
tion, and is still in function without any biological or technical problems after a three-year follow-up.

Special thanks to Dr Pantelis Petrakas.

References

1 Schiegnitz E, Noelken R, Moergel M, Berres M, Wagner W. Survival and maintenance following placement of a new Astra Tech Implant System® EV. Including OsseoSpeed Profile implants. OsseoSpeed Profile EV is the second generation of the uniquely shaped, patented implant specifically designed for sloped ridge situations that was first introduced in 2011. The implant is now upgraded with the simplicity and design principles of the Astra Tech Implant System® EV.

Fig. 18: Facial view of the bar construction and PS TiBA abutments.
Fig. 19: Oral view of the bar.
Fig. 20: After an additional healing period of one month after mucogingival surgery, the bar was inserted.

Fig. 21: Final prosthetic restoration of the upper and lower jaw.
Morbidity after harvesting of autologous pelvic bone: case report

Bimaxillary implant restoration by all-ceramic bridges

Interview: A nuanced perspective on periimplantitis

International magazine of oral implantology

Vol. 17 • Issue 2/2016

Shipping Address

Name

Address

Zip Code, City

Country

E-mail

Date, Signature

EUR 44 per year (4 issues per year; incl. shipping and VAT for customers in Germany) and EUR 46 per year (4 issues per year; incl. shipping for customers outside Germany).

Your subscription will be renewed automatically every year until a written cancellation is sent to Dental Tribune International GmbH, Holbeinstr. 29, 04229 Leipzig, Germany, six weeks prior to the renewal date.

SUBSCRIBE NOW!

F +49 341 48474 173
subscriptions@dental-tribune.com

www.dental-tribune.com